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Abstract-Exact solutions are developed for nonlinear diffusion with first-order loss (e.g. by reaction, 
irreversible absorption, biological degradation, or radioactive decay) from an instantaneous source. The 
diffusivity is proportional to a positive power of concentration. The solutions are for an arbitrary number 
of dimensions s > 0, with s = 1,2,3 in physical applications. All solutions give the slug radius exponentially 
approaching a finite maximum, with concentration decreasing exponentially to zero. Applications include 
the gravity spreading, and ultimate extinction, of liquid lenses on solid, or immiscible liquid, surfaces. The 

corresponding exact solutions for first-order gain, not loss, are also given. 

1. INTRODUCTION 

FOR DIFFUSION with diffusivity a positive power-law 
of concentration, an instantaneous source spreads to 
a slug which is always of finite radius at finite time [l- 
41. If material is lost from the slug (e.g. by chemical 
reaction, absorption on a porous substrate, solution, 
or evaporation), it may shrink and vanish in finite 
time. It may, on the other hand, approach a finite 
radius, with concentration vanishing, in the limit of 
infinite time [.5]. 

We pursue the matter here through study of the 
equation 

as = d-.?& (c ‘D,fJ”$ _kQ. at, 
(1) 

Here 6 (2 0) is concentration, normalized with respect 
to some standard concentration, t* is time, r* is the 
radial space coordinate (0 < r* < co), and s is the 
number of space dimensions 1, 2, or 3. (The analysis 
holds, in fact, for all s > 0.) The diffusivity takes the 
power-law form D , em(D 1 > 0, m > 0) ; and the time- 
rate of material loss, kB (k > 0) describes first-order 
loss by, for example, chemical reaction, irreversible 
absorption, biological degradation, or radioactive 
decay. The substitutions 

t = kt* (2) 

yield the dimensionless form 

We seek solutions of (3) satisfying the initial con- 
dition 

t = 0, 0 ,< r < co, 0 = Qs(r), (4) 

with Q the dimensionless source strength 

(0 < Q < co), and with 6( ) defined by a limiting 
process to be determined. The physical instantaneous 
source strength with dimensions [length]“, Q* = 

(D,lW’2Q. 
The solution for the linear case with m = 0, found 

by well-known methods [6], is 

Q= Q -exp [ - y]. 
(4nt)“‘2 

(5) 

For gain in place of loss (Section 5) +4t2 in (5) is 
replaced by -4t2. In what follows we consider the 
linear case no further ; and all results are for m > 0. 

2. SOLUTIONS OF EQUATIONS (3) AND (4) 

We observe that the substitutions 

e(r, t) = u(r, z) eC’, (6) 

T = mm’(l-e-“‘), 0 <r <m-l, (7) 

give 

a0 dr au _ = _ __e-‘__uem’ = e au 
-cm+ I)r ~ _ 

at dt a7 a7 0 (8) 

and 

Putting (8) and (9) in (3) reduces it to 

(10) 

Since (6) and (7) imply that at t = 0, r = 0 and u = 8, 
(10) is subject to the initial condition 

7 = 0, 0 < r < CO, u = Q&r). (11) 
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NOMENCLATURE 

D, diffusivity for 0 = 1 [m’s~ ‘1 T variable proportional to slug 

.4 gravitational acceleration [m sP’1 concentration, defined in ( 16) 

k coefficient of rate of material loss T ,,lll! minimum T-value during diffusion with 

(or gain) [s ‘1 gain 

m power index of diffusivity 11 transformed concentration-like variable, 

q dimensionless quantity of material in slug defined in (6) or (41) 

Q dimensionless instantaneous source C! similarity variable, defined in ( 13) 
strength I,/,, C:-value for p = 0. 

Q* physical instantaneous source strength 

Im’l Greek symbols 

r dimensionless radial coordinate 1’0 density of liquid lens [kg m ‘1 

r. dimensionless slug radius 1’1 density of underlying liquid Ikg m ‘1 

~rnax maximum dimensionless slug radius l- gamma function 

r* physical radial coordinate [m] (5 delta function 
R variable proportional to slug radius, 0 normalized concentration (normalized 

defined in (17) lens thickness in (4)) 

LX maximum R-value &n,, \ maximum O-value at a fixed I 
s number of space dimensionless (1, 2. or j. normalization length for 0 in (4) [m] 

3 in physical applications) 1’ kinematic viscosity of lens liquid [m’s ‘1 
2 dimensionless time I’ similarity variable, defined in ( 14) 

flJrn:,x r-value when 0 reaches its maximum at PII {j-value where U becomes zero 
a fixed I s transformed time-like variable, defined in 

t* physical time [s] (7) or (42). 

The solution of (lo), (I 1) is well known [l-4]. It is q(t) = QC /. (18) 

This is as it should be, since material is lost through 
a first-order process. 

P > PO. u = 0 

We use here the similarity substitutions 

3. PHYSICAL IMPLICATIONS OF THE 

SOLUTIONS 

Various implications follow. 

(131 
3.1. Time-course qf central concentratiarl 

(14) The maximum concentration is at the slug center. 

UC, is the value of U at p = 0, and its relation to Q is 
I’ = 0. It follows from (16) that 

Miller and van Duijn [S] previously developed the 
solution for the special case (s, nz) = (2, 1). 

Using (6) and (7), we express substitutions (13) and At small enough t this approximates classical behavior 
(14)intermsofUandt: (k = 0), with T = t +(~y’n+2’ for all f 2 0 [l-4]. Initially 

0 = Wp)T(t), T(t) = e ‘[m I(1 _e ““), t (W!i 2); material loss has negligible effect. In the limit of 
large t, 

(16) - 

/-, = v/R(t), R(f) = [m ‘(1 -e~~“‘)]‘l’““‘*“. (17) 
[ 

.s 
T(t) 

~ ,.i,irrl+2,, I 1 + ill, 
-e I snrf2 

(21) 

It follows from (16), (17) that the dimensionless quan- 
tity of material in the slug at time t, The power-law decrease seen at small t has given way 
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to exponential decrease dominated by exponential 
material loss. See Fig. 1. 

3.2. Time-course of slug radius 
It follows from (12) and (17) that the slug radius 

ro(t) = p&t). (22) 

In the limit of small f 

R(t) = t I/(.qm+ 2) (23) 

which should be compared with the classical behavior 
(k = 0) with R = t”(sm+2) [l-4]. Here also material 

loss has negligible effect initially. 
In the limit of large t 

R@) z m- l/(.w+*) [I-s]. (24) 

The power-law increase has disappeared, and is sup- 
planted by exponential approach to a finite maximum 

R max = jit R(t) = m- f’(sm+2). (25) 

The maximum slug radius r,,,,, = pORnax. See Fig. 2. 

3.3. Concentration envelope 
For all 0 < r < rmax, the concentration at fixed r 

increases from zero at t = 0, passes through a 
maximum, and returns to zero as t + co. The 
maximum value of 19 at fixed r, eman( is important 

0 ’ I 

s=2 

0 0.5 1 .o 1.5 2.0 

FIG. 1. The function T(t) for s = 1, 2, 3, m = 1, 2, 3. The 
concentration scale is proportional to T, and t is dimen- 

sionless time. 
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FIG. 2. The function R(t) for s = 1, 2, 3, m = 1 
slug length-scale is proportional to R. 
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2, 3. The 

in some contexts ; and the dimensionless time at which 
this maxlmum occurs, ternax (r), is also of interest. The 
curve emax is the envelope of all concentration pro- 
files in 0 < t ,< co. 

Combining (12), (16), (17), we find 

fj(r, t) = ui, e-z 

[ 

[m- ‘(1 _e-m)J-W(sm+2) 

mr2 1 
l/m 

-2(sm+2)U; 
[m-‘(I -epmr)lp’ . (26) 

Differentiating (26), and putting %/at = 0, we obtain 
the relation between ternax and r, 

x [m- ‘(1 -e~mru~~x)]~~(~m+ 2, (27) 

= rmax [ 1 - ,,‘ize 1 
I/* 

-%max [ 1 _ e-ml,,,] ‘KWI+ 2). 

(28) 

This gives tomax in inverse form. Putting the value 
of r from (27) in (26), we find 

X Irnm I(1 _e-m’um~~)]“~(“+ 2). (29) 
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Finally, we obtain B,,,(r) by eliminating to,,,, between 

(27) and (29). 
We observe that, in the limit as t and tOmal approach 

zero. (26), (27), (29) become 

and that 

In view of (15), (31) implies Urnax K Qr -\. Note that 
(30) and (31) represent, as they should, the 
exact results for all t > 0 for the classical material- 

conserving (k = 0) solutions [IA]. See Fig. 3. 
We observe further that, in the limit as r + r,,,i,X. 

(32) 

3.4. Illustratiw results 

Figure I shows graphs of T(t) for s = I. 2, 3 and 
m = I, 2, 3. As WC have seen, T(t) represents in 
reduced form the evolution of the concentration scale 

within the slug. 
Similarly, in Fig. 2 we depict the evolution of slug 

radius (or length scale) in the normalized form 
R(t)/R,,,. The figure shows results for s = 1. 2, 3 and 
1% = I, 2, 3. 

Figure 3 shows an example of the concentration 

FIG. 3. The concentration envelope for (s, m) = (2. 2) in the 
reduced form O,,,/UO as a function of r/r,,,. The broken line 

is the envelope for material conservation (k = 0). 

PHILIP 

envelope, calculated from (27) and (29). It is presented 
in the reduced form Oman/U,, as a function of r/r,,,,. 

The curve is for (s, m) = (2. 2). The cnvelopc for 
material conservation (k = 0) is shown for compat,i- 
son. The envelope for diffusion with loss deviates 
significantly from that for I, = 0 when r exceeds 

about 0.4 I’ ,,,,,,. 

4. APPLICATION TO GRAVITY SPREADING 

OF LIQUID LENSES 

4.1. Grocity sprradiny viz solid cd immiscible liquid 

,surjiKe.s 

In 1956 Philip [7] showed that the viscous how 01 
a liquid film over a horizontal solid surface may be 
described as nonlinear diffusion. The normalized film 
thickness 0 is the concentration-like variable, and the 
diffusivity is 91’03/(3v). Here ,q is the gravitational 
acceleration, v the kinematic viscosity. and i the nor- 
malization length. The analysis assumes that inertial 
effects are trivially small, that flow velocities are hori- 
zontal, and that effects due to vapor transport, surface 
tension. and surface diffusion are negligible. 

In 1976 Lopez et ul. [8] applied this formulation to 
gravity spreading of a liquid lens on such a surface. 

in the absence of reaction or absorption, see Fig. 4(a). 
(The assumption of horizontal flow velocities is not 
satisfied at small times after release of the lens. Strictly, 
the ‘negligible inertia’ assumption fails then also, but 
this limitation is less serious. Evidently the diffusion 
formulation holds for this application least well in the 
very early stages of the spreading process.) 

The same analysis applies to gravity spreading of a 
liquid lens (density ;.(,) on the surface of an underlying 
immiscible liquid (density ;‘, > ;1(,). Spreading of- oil 
on water is an example. The depth of the underlying 
liquid is taken to be large and the pressure in it hydro- 
static. unaffected by the lens at its surface. see Fig. 
4(b). Here also the normalized lens depth is 0. hut 
now its upper surface is at normalized elevation 
(I -;,,/y ,)O above the plane horizontal surface of the 
second liquid which lies outside the lens : and its lower 

b 

FIG. 4. (a) Liquid lens on solid surface. (b) Liquid lens on 
immiscible liquid surface. The lens density yil is less than the 

density of the underlying liquid, 7,. 
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surface is at normalized elevation yOB/yI below that 
plane. These relations are analogous to those of the 
Ghyben-Herzberg lens [9, lo] of fresh/salt ground- 
water relations in hydrology. For this case, under the 
foregoing assumptions, the flow is described by the 
same formulation, except that now the diffusivity is 

(1 -Y0/Y,)9~3@3/(3v). 
The analysis is readily extended to embrace first- 

order material loss. The relevant equation is thus (l), 
with m = 3 and D, = gL3/(3v) for lenses on solid sur- 
faces and (1 --Y&J ,) gL3/(3v) for lenses on liquid sur- 
faces, subject to initial condition (4). Two of the fore- 
going solutions (both represented in Figs. 1 and 2) are 
relevant. 

4.2. Axisymmetric spreading, (s, m) = (2, 3) 

For axisymmetric gravity spreading of the lens, with 
first-order loss, (s, m) = (2, 3), yielding : 

[ 1 
l/2 

O<p< $J: = PO> 

U(p) = u, l- ; 
2 I,3 

c 01 . (33) 

Q = 47cU;. 

T(t) = e-‘[(I -e-3’)/3]- ‘I4 

R(t) = [(l -e-3t)/3]‘/8. 

(34) 

(35) 

(36) 

4.3. Linear spreading, (s, m) = (1, 3) 

For one-dimensional gravity spreading from a line 
source, with first-order loss, (s, m) = (1, 3), yielding : 

U(p) = uo[ I- (;>‘I’? (37) 

l-(4/3) 107c 1’2 

Q=,,Il,, 3 [ 1 uy z 3.074Ui12. (38) 

T(t) = emr[(l -e-3L)/3]-‘/5 

R(t) = [(I -e~3f)/3]‘/s. 

(39) 

(40) 

4.4. Gravity spreading without loss 
Axisymmetric spreading of a liquid lens on a hori- 

zontal solid surface, without loss, leads to the special 
form of (1) with s = 2, m = 3, and k = 0. Its solution 
[8] is the appropriate particular case of the well-known 
general instantaneous source solution [ld]. It follows 
from the discussion of Section 4.1 that, with suitable 
definition of the symbols, the same solution applies 
also to spreading of the lens, without loss, on an 
immiscible liquid surface. 

Similarly, one-dimensional gravity spreading with- 
out loss, from a line source on either type of surface, 
leads to the analogous formulation, and well-known 
solution, for s = 1, m = 3. 

5. DIFFUSION WITH GAIN 

Some thermal and biological problems involve 
diffusion with gain, not loss. The minus on the right 
of (1) and (3) is then replaced by a plus. The analysis 
goes similarly, but the appropriate substitutions are 
now 

fI(r, t) = u(r, z) e’, (41) 

~=rn-‘(e”‘-l), O<z<oo. (42) 

The solutions then become 

T(t) = el[m- 1 temr _ l)]-d(sm+V ; (43) 

R(t) = Imp 1 cemr _ l)] l/h+ 2) ; (4.4 

q(t) = Qe’. (45) 

Equation (45) is consistent with material being gained 
through a first-order process. 

5.1. Time-course of concentration scale 
The scale of concentration in the slug is pro- 

portional to T. T decreases initially, passes through a 
minimum, and ultimately increases exponentially. In 
the limit of small t 

T(t) z t-‘/(sm+2) (I+=), (46) 

approximating classical behavior [l+. At large t 

> 
) (47) 

the power-law decrease giving way to exponential 
increase. We find that T attains its minimum value 

Tmi, = (;)2’r’vm+2’ @> (48) 

sm+2 
t=m-‘ln ~ ( > 2 . 

Figure 5 compares for (s, m) = (2, 2), the T(t) func- 
tions for loss, material conservation (k = 0), and gain. 

5.2. Slug length-scale 
The length-scale of the slug is proportional to R. 

R increases initially as a power of t and ultimately 
exponentially. At small t 

R(t) z 1’1(Sm+2++&), (50) 

also approximating the classical result [l-4]. At large 

R(t) z m- l/(.Ym+ 2) emt/(.Wt+ 2) 
1 

1-_-_-e-m . 

sm+2 > 
(51) 
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FK. 5. The function r(t) for (s, m) = (2, 2). Comparison Frc;. 6. The function R(t) for (s, nz) = (2, 2). Comparison 

for loss, material conservation (k = 0). and gain. The con- for loss. material conservation (k = 0). and gain. The slug 
centration scale is proportional to T. length-scale is proportional to R. 

Figure 6 makes for R(t) the same comparison as of nonlinear diffusion with gain, and of the concentration 

Fig. 5 does for 7’(t). envelope, respectively. 

6. DISCUSSION 

The foregoing exact solutions for nonlinear 
diffusion (s > 0, nz > 0) with first-order loss from an 
instantaneous source all give slug radius exponentially 
approaching a finite maximum. Concentration ap- 
proaches zero exponentiaIly as t -+ a and the slug 
vanishes. The first-order loss rate decreases with 0 fast 
enough to ensure persistence of the slug at all finite 
times. This contrasts with the case of loss rate pro- 
portional to p (0 < n < I), when slug radius increases 
to a maximum and then shrinks to zero in finite time 
[5, 111. The physical explanation of the latter case is 
that loss rate at small # remains large enough to ensure 
slug extinction in finite time 

A striking aspect of the solutions with gain (Section 
5) is the persistence of the effects of the initial 
conditions. This contrasts with the disappearance of 
the effect of initial slug quantity as t + cxj from the 
solutions for gain c* 0” (0 < II < 1) [I I]. Presumably 
the difference arises from the larger rate of gain at 
smail0 in that case. 
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