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Abstract—Exact solutions are developed for nonlinear diffusion with first-order loss (e.g. by reaction,

irreversible absorption, biological degradation, or radioactive decay) from an instantaneous source. The

diffusivity is proportional to a positive power of concentration. The solutions are for an arbitrary number

of dimensions s > 0, with s = 1, 2, 3 in physical applications. All solutions give the slug radius exponentially

approaching a finite maximum, with concentration decreasing exponentially to zero. Applications include

the gravity spreading, and ultimate extinction, of liquid lenses on solid, or immiscible liquid, surfaces. The
corresponding exact solutions for first-order gain, not loss, are also given.

1. INTRODUCTION

For pirrusion with diffusivity a positive power-law
of concentration, an instantaneous source spreads to
a slug which is always of finite radius at finite time [1—
4]. If material is lost from the slug (e.g. by chemical
reaction, absorption on a porous substrate, solution,
or evaporation), it may shrink and vanish in finite
time. It may, on the other hand, approach a finite
radius, with concentration vanishing, in the limit of
infinite time [5].

We pursue the matter here through study of the
equation
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Here 6 (>0) is concentration, normalized with respect
to some standard concentration, f4 is time, rx is the
radial space coordinate (0 < ry < o0), and s is the
number of space dimensions 1, 2, or 3. (The analysis
holds, in fact, for all s > 0.) The diffusivity takes the
power-law form D,0™(D, > 0, m > 0); and the time-
rate of material loss, k0 (k > 0) describes first-order
loss by, for example, chemical reaction, irreversible
absorption, biological degradation, or radioactive
decay. The substitutions

k\12
r= (D_|> re, t=ktx 2)
yield the dimensionless form
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We seck solutions of (3) satisfying the initial con-
dition
t=0, 0<r< oo,

with Q the

0 = Qo(r), )

dimensionless source strength
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(0 < Q < o0), and with 6( ) defined by a limiting
process to be determined. The physical instantaneous
source strength with dimensions [length]’, Q. =
(D, /k)"*Q.

The solution for the linear case with m = 0, found
by well-known methods [6], is

r2+4t2:|. )

0= Q exp| —
(4ne)*? 4t

For gain in place of loss (Section 5) +4:2 in (5) is
replaced by —4¢2 In what follows we consider the
linear case no further; and all results are for m > 0.

2. SOLUTIONS OF EQUATIONS (3) AND (4)
We observe that the substitutions

0(r,t) =u(r,v)e ', (6)

t=m '(l—e™), 0<T<m ", (7
give
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&)

Putting (8) and (9) in (3) reduces it to

ou v, 0 f ., Ou
E—r ar<r u"'a)

Since (6) and (7) imply thatatt = 0,7 =Oand u = 6,
(10) is subject to the initial condition

u = Qd(r).

(10

=0, 0<r<oo,
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NOMENCLATURE
D, diffusivity for § = 1 [m*s™ '] T variable proportional to slug
g gravitational acceleration [ms 7] concentration, defined in (16)
k coefficient of rate of material loss T.. minimum 7-value during diffusion with
(or gain) [s '] gain
m power index of diffusivity u transformed concentration-like variable,
q dimensionless quantity of material in slug defined in (6) or (41)
Q dimensionless instantaneous source U similarity variable, defined in (13)
strength U, U-value for p = 0.
O«  physical instantaneous source strength
[m"] Greek symbols
r dimensionless radial coordinate Yo density of liquid lens [kgm ]
o dimensionless slug radius 7 density of underlying liquid {kgm ']
Faae ~ Maximum dimensionless slug radius I gamma function
s physical radial coordinate [m] o delta function
R variable proportional to slug radius, 0 normalized concentration (normalized
defined in (17) lens thickness in (4))
R,.. maximum R-value 0w maximum O-value at a fixed r
s number of space dimensionless (1. 2. or A normalization length for 0 in (4) [m]
3 in physical applications) v kinematic viscosity of lens liquid [m”s ']
t dimensionless time 0 similarity variable, defined in (14)
fomax  [-value when 0 reaches its maximum at 2o p-value where U becomes zero
a fixed » T transformed time-like variable, defined in
I physical time [s] (7) or (42).

The solution of (10), (11) is well known [1-4]. It is

2smA DU
0<p< Lﬁmm)“] = pos
p 2 Um
el )
Po
p>po. U=0. (12)

We use here the similarity substitutions

U= [j([))l' \ﬁ(.\n1+2}: (13)

(14)

Eiisam + )

g =17
U, is the value of U at p = 0, and its relation to @ is

A

nt

Q= T(lsam +1)

(15)
Miller and van Duijn [5] previously developed the
solution for the special case (s, m) = (2, 1).
Using (6) and (7), we express substitutions (13) and
(14) in terms of 6 and ¢:
0 — U(p)T(l), T(l) —e f[nl - l(l —e mr)]——— 8 s+ 2):
(16)

p=r/R@). R =[m "(1—e)]" 2. (17)

1t follows from (16), (17) that the dimensionless quan-
tity of material in the slug at time ¢,

glt) = Qc™". (18)

This is as it should be, since material is lost through
a first-order process.

3. PHYSICAL IMPLICATIONS OF THE
SOLUTIONS

Various implications follow.

3.1. Time-course of central concentration
The maximum concentration is at the siug center.
r = 0. It follows from (16) that

000, 1) = UyT(1). (19)
In the limit of small 7
‘ R (sm+4)t
o f o) i R (
T() =t (1 3 n+2)> (20)

At small enough ¢ this approximates classical behavior
(k = 0), with T = r~¥“"+? for all { = 0 [1-4]. Initially
material loss has negligible effect. In the limit of
large ¢,

5 ’
T 1)~ silsm+2) I I — g nit . 2]
(1) = m ¢ { +Sm+2 J (2N

The power-law decrease seen at small 7 has given way
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to exponential decrease dominated by exponential
material loss. See Fig. 1.

3.2. Time-course of slug radius
It follows from (12) and (17) that the slug radius
rolt) = poR(0). 22)

In the limit of small ¢

R(t) = 1Vem 2 (1 - m”;—z)z) 23)

which should be compared with the classical behavior
(k = 0) with R = ¢"¢"+? [1-4]. Here also material
loss has negligible effect initially.

In the limit of large ¢

e—ml
~ g — LM+ 2) _
R(it)~=m [1 sm+2]'

The power-law increase has disappeared, and is sup-
planted by exponential approach to a finite maximum

Ry = lim R(r) = m~ 1+, (25)

(24)

The maximum slug radius #,,,, = po R See Fig. 2.

3.3. Concentration envelope

For all 0 < r < r,.,. the concentration at fixed r
increases from zero at r=0, passes through a
maximum, and returns to Zzero as f— oo. The
maximum value of 0 at fixed r, 8,,,(r), is important
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F16. 1. The function T(¢) for s=1, 2, 3, m=1, 2, 3. The
concentration scale is proportional to 7, and ¢ is dimen-
sionless time.
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FiG. 2. The function R(¢) fors=1,2, 3, m=1, 2, 3. The
slug length-scale is proportional to R.

in some contexts ; and the dimensionless time at which
this maximum occurs, #p...(r), is also of interest. The
curve 8,,,(r) is the envelope of all concentration pro-
filesin0 <t < 0.

Combining (12), (16), (17), we find

9()‘, t) = UO e_l [:[m_ l(] _e—m)]—sm/(.cm+2)

mr?

Um
_2(sm+2)Ug"[m—l(]—em)]l] el

Differentiating (26), and putting 6/é¢ = 0, we obtain
the relation between #,,,, and r,

{Z(Sm+2)U'g[ 2 i jl}”z
r= 1— e~ ™ omax
m sm-+2

X [m™ ' (1 —e™™ma)] Vet (27)
) 12
— — =Py e M 11/ (sm+ 2)
Frmax |:1 sm+2e o ] [1—e ] .
(28)

This gives Zgm, () in inverse form. Putting the value
of r from (27) in (26), we find

2 1/m

B[r(tﬂmax)v t(hnax] = (

X [~ (1~ ™ma) J0m4 2 (29)
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Finally, we obtain 6, (r) by eliminating z,,.., between
(27) and (29).

We observe that, in the limit as 7 and #,,,,, approach
zero, (26). (27), (29) become

mr 2 Trm
Qsm4+4 Uy ime D )

. JF 24 Lilsm+ D)
F= [Z‘SUO] [Hmax .

0@, 1) = Uyt ™ |:l

5

B 1'm
O[r(tamax)s Z()m;\.\] = i\ » ] UOIILI;.:lx ; (30)

sm+2

and that

2 1im
Omax(r) = (25‘)»\”2 |:ém+2J U((;,11+2)' e

In view of (15), (31) implies 0,,,,, (r) oc Qr . Note that
(30) and (31) represent, as they should, the
exact results for all ¢ = 0 for the classical material-
conserving (k = 0) solutions [1-4]. See Fig. 3.

We observe further that, in the limit as r — r,,,

3 Lo . _e\Ym
Omux (’) = m"mt 2) i”i+ 2 U() 'de ¥ .
/ 2 r\'ﬂ'd!

(32)

(31

3.4. Hlustrative results

Figure 1 shows graphs of T(¢) for s = 1., 2, 3 and
m=1, 2, 3. As we have seen, T(¢) represents in
reduced form the evolution of the concentration scale
within the slug.

Similarly, in Fig. 2 we depict the evolution of slug
radius (or length scale) in the normalized form
R(1)/Rax- The figure shows results for s = 1. 2, 3 and
m=1,2, 3.

Figure 3 shows an example of the concentration
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FI1G. 3. The concentration envelope for (s, m) = (2. 2) in the
reduced form 0,,,,/ U, as a function of r/r,,,. The broken line
is the envelope for material conservation (k = 0).
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envelope, calculated from (27) and (29). [tis presented
in the reduced form 0,,,/U, as a function of r/r,...
The curve is for (s, m) = (2, 2). The envelope for
material conservation (k = 0) is shown for compati-
son. The envelope for diffusion with loss deviates
significantly from that for k=0 when r exceeds
about 0.4 r ..

4. APPLICATION TO GRAVITY SPREADING
OF LIQUID LENSES

4.1. Gravity spreading on solid and immiscible liguid
surfaces

In 1956 Philip [7] showed that the viscous fiow of
a liquid film over a horizontal solid surface may be
described as nonlinear diffusion. The normalized film
thickness 6 is the concentration-like variable, and the
diffusivity is gi*0°/(3v). Here g is the gravitational
acceleration, v the kinematic viscosity, and 4 the nor-
malization length. The analysis assumes that inertial
effects are trivially small, that flow velocities are hori-
zontal, and that effects due to vapor transport, surface
tension, and surface diffusion are negligible.

In 1976 Lopez et al. [8] applied this formulation to
gravity spreading of a liquid lens on such a surface,
in the absence of reaction or absorption, see Fig. 4(a).
(The assumption of horizontal flow velocities is not
satisfied at small times after release of the lens. Strictly,
the ‘negligible inertia’ assumption fails then also, but
this limitation is less serious. Evidently the diffusion
formulation holds for this application least well in the
very early stages of the spreading process.)

The same analysis applies to gravity spreading of a
liquid lens (density 7,) on the surface of an underlying
immiscible liquid (density y, > v,). Spreading of oil
on water is an example. The depth of the underlying
liquid is taken to be large and the pressure in it hydro-
static. unaffected by the lens at its surface, see Tig.
4(b). Here also the normalized lens depth is 0, but
now its upper surface is at normalized clevation
(1 —70/71)0 above the plane horizontal surface of the
second liquid which lies outside the lens : and its Jower

F1G. 4. (a) Liquid lens on solid surface. (b) Liquid lens on

immiscible liquid surface. The lens density y, is less than the
density of the underlying liquid, 7.



Nonlinear diffusion with first-order loss

surface is at normalized elevation y,0/y, below that
plane. These relations are analogous to those of the
Ghyben-Herzberg lens [9, 10] of fresh/salt ground-
water relations in hydrology. For this case, under the
foregoing assumptions, the flow is described by the
same formulation, except that now the diffusivity is
(1—=70/71)94°6%|(3v).

The analysis is readily extended to embrace first-
order material loss. The relevant equation is thus (1),
with m = 3 and D, = gA*/(3v) for lenses on solid sur-
faces and (1 —y,/y,) gA*/(3v) for lenses on liquid sur-
faces, subject to initial condition (4). Two of the fore-
going solutions (both represented in Figs. 1 and 2) are
relevant.

4.2. Axisymmetric spreading, (s, m) = (2, 3)
For axisymmetric gravity spreading of the lens, with
first-order loss, (s, m) = (2, 3), yielding:

16 12
0<p< [—U3] = Po,

3 Ui

Up) = U, [1 - <ﬁ>z]m. 33)
Po

0 — dnU, (34

T(r) =e'[(1—e™?)/3]7* (35)

R(t) = [(1—e*)/3]"%. (36)

4.3. Linear spreading, (s, m) = (1, 3)
For one-dimensional gravity spreading from a line
source, with first-order loss, (s, m) = (1, 3), yielding:

10 1/2
0<p< [?US] = po,

P 2771/3
w-ofi-(2]" o
Po
r'@4/3) | 10n]"? 52 52
Q=W[T] U? ~3.074U5%. (38)
T(t) =e'[(1—e*)/3]7"° (39
R(t) = [(1—e7)/3]". (40)

4.4. Gravity spreading without loss

Axisymmetric spreading of a liquid lens on a hori-
zontal solid surface, without loss, leads to the special
form of (1) with s = 2, m = 3, and k = 0. Its solution
[8]is the appropriate particular case of the well-known
general instantaneous source solution [1-4]. It follows
from the discussion of Section 4.1 that, with suitable
definition of the symbols, the same solution applies
also to spreading of the lens, without loss, on an
immiscible liquid surface.

Similarly, one-dimensional gravity spreading with-
out loss, from a line source on either type of surface,
leads to the analogous formulation, and well-known
solution, fors = 1, m = 3.
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5. DIFFUSION WITH GAIN

Some thermal and biological problems involve
diffusion with gain, not loss. The minus on the right
of (1) and (3) is then replaced by a plus. The analysis
goes similarly, but the appropriate substitutions are
now

0(r,t) = u(r,7) €, 41
t=m'(—1), 0<1<00. 42)

The solutions then become
T(t) = e~ @~ D725 @)
RE)=[m~ ' @ =] (44
q(t) = Q¢". (45)

Equation (45) is consistent with material being gained
through a first-order process.

5.1. Time-course of concentration scale

The scale of concentration in the slug is pro-
portional to T. T decreases initially, passes through a
minimum, and ultimately increases exponentially. In
the limit of small ¢

() ~ 1=/em+ D (1 + (Sm+4)’>, (46)

2(sm+2)

approximating classical behavior [1-4]. At large ¢

T(t) ~ ms/(sm+ 2)621/(sm+ 2) (l +_ e-mr)j (47)

sm+2

the power-law decrease giving way to exponential
increase. We find that T attains its minimum value

T B s — 2/(sm+2) Sm+2 i/m
min T 2 2

t=m'ln sm+2
5 )

Figure 5 compares for (s, m) = (2, 2), the T(¢) func-
tions for loss, material conservation (k = 0), and gain.

(48)

when

(49)

5.2. Slug length-scale

The length-scale of the slug is proportional to R.
R increases initially as a power of ¢ and ultimately
exponentially. At small ¢

R(t) ~ ¢ Vom+2) (1 + (50)

mt
2(sm+2) /)’
also approximating the classical result [1-4]. At large
t

R(t) ~mo 1/(sm+2) emt/(.vm+ 2) <1 o
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Fii. 5. The function T(¢) for (s, m) = (2, 2). Comparison
for loss, material conservation (k = 0), and gain. The con-
centration scale is proportional to 7.

Figure 6 makes for R(t) the same comparison as
Fig. S does for T(¢).

6. DISCUSSION

The foregoing exact solutions for nonlinear
diffusion (s > 0, m > 0) with first-order loss from an
instantaneous source all give slug radius exponentially
approaching a finite maximum. Concentration ap-
proaches zero exponentially as 7 — oo and the slug
vanishes. The first-order loss rate decreases with 0 fast
cnough to ensure persistence of the slug at all finite
times. This contrasts with the case of loss rate pro-
portional to & (0 < n < 1), when slug radius increases
to a maximum and then shrinks to zero in finite time
[5, 11]. The physical explanation of the latter case is
that loss rate at small # remains large enough to ensure
slug extinction in finite time.

A striking aspect of the solutions with gain (Section
5) is the persistence of the effects of the initial
conditions. This contrasts with the disappearance of
the effect of initial slug quantity as { - oo from the
solutions for gain oc " (0 < n < 1) [11]. Presumably
the difference arises from the larger rate of gain at
small 8 in that case.
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Fii. 6. The function R(1) for (s, 1) = (2, 2). Comparison
for loss, material conservation (k = 0}, and gain. The slug
length-scale is proportional to R.

of nonlinear diffusion with gain, and of the concentration
envelope, respectively.
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